Tutustu kemian “tuplanobelisti” Barry Sharplessin haastatteluun vuodelta 2019

Barry Sharpless

Barry Sharplessin tutkimusryhmästä on vuosien varrella putkahtanut ulos orgaanisen synteesin menetelmiä, joista on ollut huomattava hyöty teollisuudelle. Sharpless on innovatiivinen tutkija, joka yhä etsii uusia, toimivia ratkaisuja orgaanisten molekyylien valmistukseen. Ihanteena on täydellinen reaktio, jossa saanto on sata prosenttia eikä sivutuotteita synny ollenkaan.

Yhdysvaltalainen Barry Sharpless pokkasi vuonna 2001 puolet kemian Nobel-palkinnosta. Palkinto myönnettiin kiraalisten katalyyttisten hapetusreaktioiden kehittämisestä. Sharpless kehitti ryhmineen menetelmän, jossa syntyy stereokemialtaan tarkasti määriteltyä glysidolia. Reaktio tuottaa vain yhtä isomeeriä, joko R- tai S-muotoa eikä isomeerien seosta kuten yleensä orgaanisissa synteeseissä. Sharplessin menetelmällä on ollut valtava merkitys lääketeollisuudelle, joka käyttää glysidolia sydänlääkkeiden valmistukseen.

Sittemmin Sharpless on syventynyt click-kemiaan. Toiveena on saada lähtöaineet reagoimaan täydellisesti halutuksi tuotteeksi, suurella saannolla ilman sivureaktioita.

Sharpless kiinnostui kemiasta ja tutkimuksesta opiskellessaan Dartmouth Collegessa New Hampshiressa. Vuonna 1968 hän väitteli tohtoriksi Stanfordin yliopistossa ja toimi sen jälkeen professorina sekä Stanfordissa että MIT:ssa. Lähes kolmen vuosikymmenen ajan hän on kehittänyt kemian synteesejä Scripps Research –instituutissa Kaliforniassa. Tällä hetkellä hän tutkii click-kemiaa myös yhteistyössä Shanghain orgaanisen kemian instituutin kanssa.

Barry Sharpless vieraili maaliskuussa luennoimassa Helsingissä pidetyssä ChemBio- tapahtumassa Helsingin Messukeskuksessa, jossa oheinen haastattelu on tehty.

Barry Sharplessin työllä on ollut merkittävä vaikutus lääketeollisuudelle

Barry Sharplessin laboratoriossa on kehitetty tärkeitä menetelmiä kemian synteeseihin. Orgaanisen kemian professori Ari Koskinen Aalto-yliopistosta kertoo podcastissa Sharplessin Nobel-palkintotöistä, työstä click-kemian parissa ja click-kemian suuntauksista.

Nobelistit Barry Sharpless, Ada Yonath ja Fraser Stoddard keskustelivat ChemBion paneelissa, jota veti professori Ari Koskinen Aalto-yliopistosta (kuvassa oikealla).

Jutun toimitus Sisko Loikkanen, valokuvat Sisko Loikkanen ja Juho Leikas

Suomestako uuden akkuteknologian edelläkävijä?

Professori Ulla Lassin tutkimusryhmässä Oulun yliopiston Kokkolan yliopistokeskuksessa kehitetään sekä akkukemikaaleja litiumioniakkuihin että katalyyttejä. Ryhmässä etsitään myös valmistusmenetelmiä, jotka voidaan skaalata teolliseen mittakaavaan. Tulevaisuuden lupaava vaihtoehto on painettava akkuteknologia, jossa nykykennojen nestemäinen elektrolyytti korvataan kiinteällä, jauhemaisella aineella, mikä mahdollistaisi akkukennojen painamisen rullalta rullalle -menetelmällä.

Tutkijana Ulla Lassia motivoi yhteistyö teollisuuden kanssa. Kuva: Mikko Törmänen.

Kokkolassa suunnataan kohti tulevaisuuden akkuja

 

Kokkola on erinomainen paikka tutkia akkukemikaaleja, koska Keski-Pohjanmaan litiumvarannot on arvioitu Euroopan suurimmiksi. Litiumia esiintyy Pohjanmaalla spodumeenimineraalina, ja Geologian tutkimuskeskus on arvioinut litiumvarantojen riittävän 10-15 vuodeksi. Suomalainen Keliber-yritys suunnittelee Kokkolaan litiumkemiantehdasta ja aikoo hyödyntää paikallista litiumia. Professori Ulla Lassilla on paljon tutkimusyhteistyötä paikallisen teollisuuden kanssa.

”Parasta työssäni on juuri teollisuusyhteistyö, joka motivoi ja luo sopivasti painetta onnistumiseen, jotta saamme tutkimuksen hedelmät hyötykäyttöön ja sovelluksiin”, Lassi toteaa innostuneesti.

”Kokkolan ja Suomen mahdollisuudet ovat akkuarvoketjun alkupäässä, raaka-aineissa ja niiden jalostuksessa. Erityisesti litiumin suhteen olen toiveikas, koska litium on varsin tärkeä aine tulevaisuuden akuissa. Menestymisen edellytys on, että olemme entistä enemmän mukana kansainvälisessä teollisessa yhteistyössä ja verkostoissa”, hän jatkaa.

Litiumioniakku on Nobelilla palkittua teknologiaa

 

Energian varastointiin kehitetyn litiumioniakun kehittäminen nykymuotoiseksi vei vuosikymmeniä ja alkoi jo 1970-luvulla. Kolme keskeistä kehittäjää, John B. Goodenough, Stanley Whittingham ja Akira Yoshino, palkittiin vuoden 2019 kemian Nobel-palkinnolla. Lähes jokainen meistä kantaa mukanaan litiumioniakkua matkapuhelimessa ja tietokoneessa.

Akku sisältää kaksi elektrodia, anodin ja katodin, separaattorin, virrankeräimet sekä elektrolyyttiliuoksen. Akun toiminta perustuu sähkövirtaa synnyttävien elektronien liikkeeseen ja akkukennoissa tapahtuviin sähkökemiallisiin hapetus-pelkistysreaktioihin. Hapettumisessa anodilla vapautuu elektroneja, jotka katodimateriaali ottaa vastaan pelkistymisessä.

Akkujen anodimateriaalina on yleisimmin grafiitti. Ulla Lassin tutkimuksen kohteena ovat katodimateriaalit, jotka ovat litioituja siirtymämetallioksideja, koboltti-, mangaani- ja nikkelioksideja.

Lassin ryhmässä metallioksideja tutkitaan myös muihin sovelluksiin kuten katalyytteihin. Oksideja valmistetaan kerasaostamalla koboltista, mangaanista ja nikkelistä hydroksidia, joka kalsinoidaan oksidiksi.

”Valmistus on aika helppoa peruskemiaa, joka osataan, mutta tutkimuksemme haasteena on muokata metallihydroksidit tai karbonaatit ja edelleen oksidit sellaiseen muotoon, että niiden fysikaaliset ominaisuudet kuten morfologia, partikkelikoko ja tiheys ovat optimaaliset kulloiseenkin sovellukseen”.

Tutkijan haasteena on räätälöidä metallioksidi käyttökohteen mukaan. Akkuun menevä metallioksidi on rakenteeltaan erilaista kuin oksidi katalyytissä.

”Akkujen katodimateriaalilta vaaditaan korkeaa energiatiheyttä ja hyvää stabiilisuutta. Nikkelioksidipartikkeliin pitää saada energiatiheyden kasvattamiseksi mahdollisimman paljon massaa. Lisäksi materiaalia doupataan tai se pinnoitetaan stabiilisuuden ja syklattavuuden parantamiseksi”.

Aktiivista elektrodimateriaalia FESEM-mikroskooppikuvassa. Materiaalin partikkelikoko on 8 mikrometriä. Kuva: Ulla Lassi.

Testausta pussikennoilla

 

Kokkolan yliopistokeskuksen ja Oulun yliopiston laboratorioissa oksidien ominaisuudet tutkitaan ja sopivuus käyttökohteeseen testataan monin eri tavoin.

”Teemme akkukemikaaleista pieniä pussikennoja, akkukennoja, ja testaamme niitä hallitusti akkuja lataamalla ja purkamalla, mikä mallintaa akun toimintaa ja antaa tietoa käytettävyydestä ja materiaalien kestävyydestä”.

Pieni pussikenno, litiumioniakku, jonka sisällä ovat tarvittavat komponentit, anodi, katodi, separaattori, virrankeräimet ja elektrolyytti. Kuva: Ulla Lassi.

Tutkimuskohteena myös akkukemikaalien valmistaminen teollisessa mittakaavassa

 

Lassin ryhmässä etsitään myös hyviä, toistettavia teollisia valmistusmenetelmiä, jotka voidaan skaalata suurempaan teolliseen mittakaavaan jatkuvatoimisessa saostusreaktorissa. Muitakin valmistustapoja akkukemikaaleille löytyy, mutta kerasaostus on ainoa teollisen mittakaavan menetelmä.

Lassin ryhmässä valmistettuja litiumakkukemikaaleja on sellaisenaan jo käytetty kaupallisissa litiumioniakuissa mutta etsinnässä ovat myös aivan uudenlaiset, korvaavat materiaalit.

”Tutkimme uudenlaisia kobolttivapaita akkumateriaaleja, jotka voisivat tulla teolliseen tuotantoon lyhyellä aikavälillä. On kuitenkin muistettava, että koboltilla on keskeinen rooli akkukemiassa, ja kobolttivapaat kemiat vaativat myös uudenlaista lämpökäsittelyä ja kemiallista käsittelyä, jotta akkumateriaalin halutut ominaisuudet voidaan säilyttää”.

Täysin uusien akkuteknologioiden kuten natriumioniakkujen tutkimukseen Lassi ei ole ryhtynyt.

”Etsimme ratkaisuja, jotka tukevat tällä hetkellä vahvaa metallinjalostustoimintaa ja litiumkaivostoimintaa Suomessa, ja siksi pitäydymme litiumioniakkujen materiaaleissa. Lisäksi kiertotalouden kautta myös sivutuotteiden hyödyntäminen akkukemikaalien valmistuksessa avaa paljon uutta tutkittavaa ja uusia mahdollisuuksia”, hän perustelee.

Painotekniikka saattaa mullistaa akkukennojen valmistuksen

 

Ulla Lassi on vastuullisena johtajana mukana myös kahdessa hankkeessa, joissa litiumioniakkujen valmistukseen pyritään soveltamaan Oulun yliopiston painettavan elektroniikan osaamista yhteistyössä muun muassa VTT:n kanssa.

”Tavoitteena on uudentyyppisten akkukennojen valmistaminen siten, että kenno voidaan painaa rullalta rullalle -menetelmällä. Tästä saattaisi tulla uusi kennonvalmistustapa, joka mahdollistaisi ekologisempien ja turvallisempien akkujen valmistuksen”.

Painettava kennoteknologia tekisi tarpeettomaksi nykykennoissa käytetyn haitallisen elektrolyyttiliuoksen, jonka suola voi vapauttaa myrkyllistä vetyfluoridia akkuja kierrätettäessä.

”Pyrkimys on korvata nestemäinen elektrolyytti kiinteällä, jauhemaisella aineella, joka painetaan katodin pinnalle. Toistaiseksi kiinteän elektrolyytin ioninjohtokyky on ollut liian alhainen eikä riitä akkukäyttöön, mutta olemme jo saaneet kansainväliseltä partneriltamme erittäin lupaavan elektrolyyttimateriaalin kokeiltavaksi”.

Painettava akkuteknologia vaikuttaa lupaavalta, ja Lassin tulevaisuusvisioissa teknologiasta saattaisi tulla maahamme aivan uusi teollisuudenala.

”Suomesta voi tulla ehkäpä uuden, painamalla tehtävän akunvalmistusteknologian edelläkävijä”, hän kaavailee.

Metallioksideista kehitetään katalyyttejä vedenpuhdistukseen ja biomassan hyötykäyttöön

 

Lassin ryhmässä metallioksideja sisältäviä katalyyttejä suunnitellaan sekä vedenkäsittelyyn että biomassan katalyyttiseen hyödyntämiseen.

”Suomessa ei ole vielä teollisia sovelluksia, joissa katalyyttistä märkähapetusta sovelletaan, mutta tulevaisuudessa sille on käyttöä muun muassa mikromuovien ja lääkeainejäämien poistamiseksi vesistä. Tutkimme katalyyttistä vedenkäsittelyä yhteistyössä yrityksien kanssa”.

Ulla Lassi johtaa Oulun yliopistossa Kestävän kemian tutkimusyksikköä ja rakentaa tutkimuksellaan vihreämpää tulevaisuutta, jossa teollisissa prosesseissa, energiantuotannossa ja veden puhdistuksessa käytetään ympäristöystävällisiä ratkaisuja.

”Kemikaalien ja jätteiden haitallisia vaikutuksia ympäristöön ja terveyteen pyritään vähentämään, ja kestävän kemian visiossa kiertotalous on keskeistä”, Lassi määrittelee.

 

Jutun toimitus Sisko Loikkanen

Anu Hopia käynnisti molekyyligastronomisen tutkimuksen Suomessa

Molekyyligastronomiassa tutkitaan monipuolisesti ruokailukokemusta. Alalla työskentelee kemistien ja fyysikoiden lisäksi useiden eri alojen ammattilaisia kuten psykologeja, arkkitehtejä ja matemaatikoita. Tutkimukset ovat paljastaneet, että käytämme syödessämme haju- ja makuaistin lisäksi myös näkö-, kuulo- ja tuntoaistia. Moniaistisuus kiinnostaa professori Anu Hopiaa, joka toi molekyyligastronomian tutkimuksen Suomeen.  

Tutkimus on johdattanut Anu Hopian yhteistyöhön eri alojen ammattilaisten kuten kokkien, muusikoiden, arkkitehtien ja etnologien kanssa. Kuva: Sisko Loikkanen

Mullistava lukukokemus

 

Vuonna 1989 Turun yliopiston elintarvikekehityksen professori Anu Hopia hankki itselleen Harold McGeen kirjan ”On Food and Cooking – The Science and Lore of Kitchen”.

Lukukokemus sysäsi Hopian aivan uudelle tielle, molekyyligastronomian tutkijaksi ja pioneeriksi Suomessa.
”Kirja antoi opiskelualalleni elintarvikekemialle aivan uuden sisällön ja suunnan. Teoksessa kulttuuri sidottiin luonnontieteelliseen näkökulmaan, ja lähdin alalle ihastuneen uteliaana”, Hopia muistelee.

Amerikkalaisen McGeen teosta on luonnehdittu ruoanlaiton ja keittiökemian klassikoksi, johon johtavat keittiömestarit kautta maailman tukeutuvat. McGee itse ei ole kuitenkaan maineikas keittiömestari vaan kirjallisuustieteilijä, joka ensin opiskeli tähtitiedettä kuuluisassa Caltechissa mutta siirtyi kirjallisuustieteeseen ja väitteli tohtoriksi John Keatsin runoista Yalen yliopistossa. Hän on sittemmin julkaissut useita teoksia ruoanlaitosta ja luennoinut säännöllisesti Harvardin yliopistossa. McGee pitää myös kursseja Ranskalaisessa kulinaarisessa instituutissa New Yorkissa.

Molekyyligastronomia ymmärretään usein ruoanvalmistuksen kemian ja fysiikan tutkimiseksi mutta tutkimuskohde on paljon laajempi.

”Kyse on kemian ja fysiikan lisäksi ruoasta nauttimisen tieteellisestä tutkimuksesta. Ruokailukokemus nostettiin tasavertaiseksi tutkimuskohteeksi muiden elintarviketieteiden rinnalle, kun molekyyligastronomiasta tuli uusi tutkimussuunta 1980-luvun lopulla”.

Alan termistö on vaihtelevaa. Kun Suomessa puhutaan molekyyligastronomiasta, englanninkielisissä yhteyksissä kyse on gastronomian tieteestä, science of gastronomy tai gastrofysiikasta. Myös Tanskassa tutkijat käyttävät termiä gastrofysiikka.

Hopia korostaa että molekyyligastronomia on nimenomaan tieteellistä tutkimusta eikä tällä termillä tarkoiteta ollenkaan maineikkaiden ravintoloiden molekyylikokkausta.
”Molekyyligastronomia on monesti koettu ruoanlaiton yhdeksi genreksi, jota se ei kuitenkaan ole, eli kyse ei ole molekyylikokkauksesta”, Hopia painottaa.

”Keittiömestarit alkoivat kyllä soveltaa tutkijoiden kehittämiä teknologioita ja ideoita ja ottivat ne käyttöön keittiössä mutta haluavat irtisanoutua termistä molekyyligastronomia”.

Tutkijoiden innovoimista, ravintoloiden omaksumista tekniikoista Hopia mainitsee matalalämpökypsennyksen.

”Se tarkoittaa hidasta kuumennusta termostoidussa hauteessa asteen tarkkuudella säädellyssä lämpötilassa, esimerkiksi 54, 58 tai 62 Celsius-asteen lämpötilassa. Menetelmä on yleisesti käytössä ravintoloissa, ja monilla ruokaharrastajillakin on laitteisto nykyisin kotonaan”.

Koska molekyyligastronomian tutkimuskohde on laaja, on selvää että tutkimusalalla häärii monien eri alojen ammattilaisia, kemistejä, fyysikkoja, matemaatikkoja ja psykologeja.

”Oikeastaan vasta tutkimuskysymys määrittää, millä tutkimusvälineillä tai minkä teoreettisen viitekehyksen läpi tutkimusta tehdään. Olen itsekin yhteistyössä paitsi keittiömestareiden myös muusikoiden, matemaatikoiden, arkkitehtien ja etnologien kanssa”, Hopia kertoo.

Jotta uusia annoksia pystytään kehittämään ja muokkaamaan raaka-aineita entistä monipuolisemmin, tarvitaan tietoa kemiallisista ja fysikaalisista muutoksista ruoanvalmistuksen aikana.
”On kuitenkin hyvä tiedostaa, että kemiallisesti ja fysikaalisesti täydellinen annos ei välttämättä ole ruokailijan mielestä se mieluisin kokemus”, Hopia huomauttaa.

Ympäristö ja seura vaikuttavat ruokailukokemukseen

 

Tunnelmallisessa iltaravintolassa takkatulen ääressä ruokailukokemus on erilainen kuin meluisassa lounaspaikassa. Ympäristön estetiikka ja visuaalisuus, ruoan värikirjo ja astioiden materiaali vaikuttavat. Ei ole lainkaan yhdentekevää, syömmekö posliinilautaselta vai pahvinpalaselta. Sekin merkitsee, nautimmeko ruokaa yksin vai hyvässä seurassa.

”Olenkin usein sanonut, että huono ruoka hyvässä seurassa voi olla mieluisampi kokemus kuin hyvä ruoka huonossa seurassa”.

Myös omat tunnetilat ratkaisevat.
”Sekin vaikuttaa, tunnetko syyllisyyttä syödessäsi kakkupalan”, Hopia pohtii.

Oma persoona, yksilölliset erot, jopa sosiaalipsykologiset ulottuvuudet, aiemmin koetut tilanteet ja omat odotukset vaikuttavat ruokailutilanteessa.
”Silläkin on merkitystä, oletko persoonana yllätyksiä etsivä vai kaihdatko uutta ja odottamatonta”.

Syödessämme eri aistit toimivat yhteistyössä

 

Anu Hopiaa kiinnostaa tutkimuskohteena moniaistisuus, kuinka eri aistimme toimivat ruokailutilanteessa yhdessä ja yhteistyössä.
Perinteisestihän ruokailuun liitetään lähinnä haju- ja makuaistimus, mutta tutkimuksissa on havaittu, että muutkin aistit ovat tärkeitä emmekä sulje niitä pois syödessämme. Moniaistiseen maistamiskokemukseen vaikuttavat merkittävästi näkö- ja hajuaistimus mutta myös kuulo- ja tuntoaistimus.

Brittiläinen kokeellisen psykologian professori Charles Spence Oxfordin yliopistosta on tutkinut moniaistisuutta ja musiikin vaikutusta. Tutkimukset vahvistavat, ettei ole yhdentekevää, mitä taustalla kuulemme kun syömme. Musiikki vaikuttaa siihen, kuinka aistimme ruoan ja juoman.
”Musiikkiin liittyvä tunnetila siirtyy ruokakokemukseen. Melun taas on havaittu vaimentavan makuaistimusta”.

Musiikilla lienee jopa huikeasti suurempi merkitys kuin on osattu aavistaakaan.

”Sveitsissä musiikin on todettu ei-tieteellisessä kokeessa vaikuttavan jopa juustojen kypsymiseen, ja meiltäkin on juuri vertaisarvioinnissa tutkimus, jonka tulokset viittaavat samaan”, Hopia paljastaa.
Kyse ei ole kuitenkaan juuston mikrobien kuulemisesta vaan ääniaaltojen vaikutuksesta fysikaalisina otuksina. Turun yliopistossa on käynnissä tutkimus, jossa työskennellään ääniaaltojen parissa.

”Tutkimme, kuinka ääniaallot vaikuttavat fermentoiviin eli käymisen aiheuttaviin mikrobeihin”, Hopia kertoo.

Molekyyligastronomian uudehko tärkeä tutkimuskohde on Hopian mukaan myös ruoan vaikutus hyvinvointiin.

Entäpä millaisia kemian tutkimusaiheita molekyyligastronomiassa ratkotaan?

Hopia ottaa esimerkiksi ruoan värit, joiden tiedetään vaikuttavan vahvasti ruokailukokemukseen. Molekyyleissä on kromoforeiksi kutsuttuja ryhmiä, jotka yhdessä valon kanssa toimiessaan saavat aikaan värit.

”Molekyylien ja valon vuorovaikutus on se perusta, jolta lähdemme tutkimaan värien kokonaisuutta, kuinka värit vaikuttavat toisiinsa ja kuinka vierekkäiset värit vaikuttavat siihen kuinka näemme ja koemme ne ruoassa”.

Turun yliopistossa on pian valmistumassa mielenkiintoinen väitöskirja värin merkityksestä ruokailukokemukseen.

Anu Hopia on ahkera luennoitsija ja kirjoittaja. Kuvassa hän kertoo ruoanvalmistuksen ihmeellisistä ilmiöistä innostuneelle kuulijakunnalle Tiedekeskus Heurekassa. Kuva: Sisko Loikkanen

Kalenteriin mahtuu kansainvälistä yhteistyötä ja ruokaklubin kokoontumisia

 

Vuosien mittaan Hopia on professorityönsä ohessa luennoinut ahkerasti ruoan kemiasta ja molekyyligastronomiasta myös suurelle yleisölle. Yhteistyöstä kokkien kanssa on putkahtanut kirjoja, ja kursseja ja tapahtumia on järjestetty.

Espanjassa sijaitseva Basque Culinary Centre ja norjalainen kemiasta väitellyt tohtori Erik Fooladi ovat olleet Hopian monivuotisia yhteistyökumppaneita. Erik Fooladin kanssa hän julkaisi kirjan Hyppysellinen tiedettä.

Hopian käynnistämä luonnontieteellis-gastronominen ruokaklubi keittiömestari Tatu Lehtovaaran kanssa on perinne, jolla on kymmenvuotinen historia takana ja toivottavasti useita vuosia edessä.

”Pohdimme klubilla ruoan ja ruoanvalmistuksen ilmiöitä kokeita tehden. Asetelma ei ole se, että toinen osapuoli opettaa ja toinen oppii, vaan vuoropuhelu on vastavuoroista. Olen oppinut keittiömestareilta tosi paljon käytännön kokemuksen tuomaa tietoa ja havaintoja”.

Klubi kokoontuu kerran kuussa useimmiten Helsingin Roihuvuoressa. Tutkimuksen kohteet vaihtelevat mielenkiinnon mukaan aina riisipuuron valmistuksesta pihvinpaistoon. Klubin aluksi Hopia pitää perehdyttävän johdatuksen aiheeseen, samalla kokki kokkailee keittiössä testattavat maistiaiset. Aistinvaraisten arviointien jälkeen seuraa tulosten käsittely, vertailu ja keskustelu. Viimeisin ruokaklubi järjestettiin koronaepidemian vuoksi virtuaalisesti. Klubi jatkuu syksyllä.

Kesäkeittiön kemiaa tapahtumassa oli Anun kanssa mukana luonnontieteellis-gastronomisen ruokaklubin keittiömestari, tietokirjailija ja ruokatuotannon opettaja Tatu Lehtovaara. Kuva: Juho Leikas

Jutun toimitus Sisko Loikkanen

Kemistit rakentavat pikkuruisia nanokoneita liittämällä molekyylejä toisiinsa heikoilla sidoksilla

Haastateltavana professori Kari Rissanen Jyväskylän yliopistosta

Heikkojen sidosten avittamana molekyyleistä syntyy isohkoja, jopa nanometrien mittaisia pikkukoneita. Niissä voi olla koneiden tapaan liikkuvia osia, ja muotoon ja toimintaan on saatettu etsiä piirteitä arkipäivän tutuista laitteista kuten autoista. Nanokemian kehitystä ovat kiihdyttäneet Nobelillakin palkitut oivallukset ja tutkimuslöydöt.

Professori Kari Rissasen tutkimusryhmässä toteutettu nanokapseli.

Kemistit pystyvät nykyisin kokoamaan molekyyleistä mitä ihmeellisimpiä nanokoneita, jotka saattavat muistuttaa muodoltaan tai toiminnaltaan jopa autoa, hissiä tai asemien välillä seilaavaa sukkulaa. Nanokoneita tutkiva kemian haara on supramolekyylikemia.

”Supramolekyylikemia on avartanut perinteistä orgaanisen kemian tutkimusta. Käyttämällä hyväksi erilaisia heikkoja vuorovaikutuksia molekyylien välillä saamme ne tekemään monenlaisia toimintoja”, professori Kari Rissanen Jyväskylän yliopistosta kertoo.

Supramolekyylikemia on melko uudehko ala, jonka pioneerit Jean-Marie Lehn, Donald Cram ja Charles Pedersen palkittiin kemian Nobelilla vuonna 1987. Heistä ranskalainen Lehn otti käyttöön supramolekyylikemia-termin.

Alalle myönnettiin jo toinenkin kemian Nobel vuonna 2016, kun Jean-Pierre Sauvage, J. Fraser Stoddart ja Bernard Feringa palkittiin molekyylikoneiden kehittämisestä.

Perinteisesti kemistit ovat hyödyntäneet orgaanisessa kemiassa vahvoja eli kovalenttisia sidoksia, mutta supramolekyylikemisti käyttää hyväkseen myös vetysidoksia ja muita molekyylien välisiä heikkoja vuorovaikutuksia. Näiden heikkojen sidosten avulla molekyylejä voidaan koota suuremmiksi rakenteiksi, joissa molekyylit toimivat kollektiivina yhdessä.

”Voimme tehdä nanokokoisia molekyylirakenteita, joissa on satoja tai jopa tuhansia atomeja”, Rissanen kertoo.

”Rakenne voi olla kooltaan vaikkapa 5 x 5 x 5 nanometriä. Vertailun vuoksi aspiriinimolekyyli on huikeasti pienempi, kooltaan vain 0,15 x 0,5 x 0,6 nanometriä eli vain noin 1/25000 nanomolekyylistä”.

Kari Rissanen on käynnistänyt supramolekyylikemian tutkimuksen Suomessa, Jyväskylän yliopistossa.

Supramolekyylikemiassa on tietotaitoa karttunut jo niin paljon, että kemistit pystyvät hyvin toteuttamaan haluamiaan rakenteita.

”Kun käytämme hyväksi molekyylien itsejärjestäytymistä, voimme valmistaa suuria ja monimutkaisia rakenteita todella helposti vain sekoittamalla sopivia yhdisteitä keskenään ja luonto hoitaa loput”.
Joskus pelkkä sekoittaminen ei riitä, vaan kemisti joutuu puurtamaan pidempään ja tekemään jopa kymmenen reaktiovaihetta saadakseen aikaan monimutkaisen rakenteen. Hyvästä suunnittelusta huolimatta tulos saattaa kuitenkin yllättää kokeneenkin kemistin.
”Tämä johtuu siitä, että heikkoja vuorovaikutuksia on lähes mahdotonta hallita täydellisesti. Ne tekevät vain sen, mikä niille on luontaista ja helpointa, ja yleensä tuloksena syntyy termodynaamisesti pysyvin rakenne”.
Haastavinta kemistille on suunnitella ja tehdä rakenne, joka suorittaa haluttua tehtävää. Molekyylit voivat toimia vaikkapa on-off -kytkiminä tai avautua ja sulkeutua ulkoisen käskyn kuten valosäteilyn ohjaamana.
Kiinnostava tutkimuskohde Kari Rissasen mielestä ovat molekyylimuistit, joissa molekyyliin tai hyvin pieneen molekyylijoukkoon voidaan säilöä tietoa siten, että molekyylissä on arvoja 0 ja 1 vastaavat tilat. Sopivia rakenteita osataan jo valmistaa mutta niiden toiminnassa on yhä puutteita.
”Muistimolekyylien pysyvyys ja lukeminen ovat ongelmallisia. Vaikka käytettävä energiamäärä on hyvin pieni, yhden molekyylin lukeminen vaatii niin paljon energiaa että muistimolekyyli tuhoutuu luettaessa, eli käy kuten Mission Impossible –elokuvassa”.

Yksittäisen elävän syöpäsolun eli niin sanotun HeLa-solun sisältämä pyrofosfaatti on värjäytynyt oranssiksi pyrofosfaattisensorin vaikutuksesta. (Kuva Varpu Marjomäki ja Kari Rissanen)

Vuonna 2014 professori Kari Rissasen tutkimusryhmässä Jyväskylän yliopistossa kehitettiin maailman herkin pyrofosfaattianionin tunnistusreseptori.
Reseptori on molekyyli, joka kykenee tarkasti tunnistamaan tietyn ionin tai molekyylin. Tunnistamiseen se käyttää tarkkaa kolmiulotteista rakennettaan ja heikkoja vuorovaikutuksia. Jos kohde on ioni, reseptori kiinnittyy vain siihen mutta ei muihin läsnäoleviin ioneihin. Reseptorin toivotaan myös raportoivan tunnistuksesta eli ilmaisevan että tunnistus on tapahtunut.
”Pyrofosfaattianionin tunnistusreseptori tunnistaa syöpäsoluissa pyrofosfaatin, jonka pitoisuus on koholla. Reseptori pystyy toimimaan niin pieninä pitoisuuksina, että sitä voidaan käyttää elävissä soluissa pyrofosfaatin kuvantamiseen”, Rissanen selventää.
Professori Rissasen ryhmässä tutkitaan reseptoreja sekä kationeille, anioneille että ionipareille. Ryhmässä kehitetään myös ligandeja itsejärjestyviin molekyylirakenteisiin.
”Tavoitteemme on ligandimolekyyli, joka vuorovaikuttaa toisen molekyylin, atomin tai metallikationin kanssa niin, että niistä kollektiivina muodostuu haluttu rakenne”.
Vuonna 2017 ryhmä onnistui valmistamaan suuren nanokapselin, jonka halkaisija on 4,5 nanometriä.
”Se koostuu kuudesta samanlaisesta ligandista, jotka liittyvät toisiinsa kahdentoista metalli-ionin välityksellä. Tuloksena on heksameerinen eli kuusikomponenttinen kapseli”.

Ligandi, jota käytettiin nanokapselin valmistamiseen.

Rissasen ryhmässä tutkitaan myös kultananohiukkasten rakennetta yhteistyöprojektissa italialaisen Padovan yliopiston kanssa.
”Kultananohiukkasetkin saattaisivat kelvata lääkeaineen kuljettimeksi tai solun sisäisiksi kuvantamisaineiksi pyrofosfaatin tavoin”.
Nanomolekyylien rakenteita tutkitaan röntgensäteiden avulla, röntgensädediffraktiomenetelmällä.
”Se on edelleen tehokkain ja paras menetelmä, kun tutkitaan supra- ja nanomolekyylien rakenteita atomien tarkkuudella. Menetelmä on pysynyt samana jo 25 vuotta, mutta tänä aikana tietokoneet ja mittalaitteet ovat kehittyneet valtavasti. Kun kaksikymmentä vuotta sitten pienehkön supramolekyylin tutkiminen vei viikon tai jopa kuukausia, niin nykylaitteilla saamme tuloksen alle kahdessa päivässä”.
”Röntgensädetutkimus on kuin salapoliisityötä. Alussa emme ole varmoja, saammeko rakenteen selville, mutta nykyisin useimmiten onnistumme ja voimme lopputuloksena piirtää siitä näyttäviä kuvia”
Alla on esimerkkejä näistä näyttävistä kuvista.

Yksinkertaisen molekyylikoneen, katenaanin kiderakenne, joka kehitettiin Kari Rissasen ja edesmenneen saksalaisen professorin Fritz Vögtlen tutkimusyhteistyön tuloksena vuonna 1993.

Nanokokoinen molekyylihäkki syntyi molekyylien itsejärjestymistä käyttäen Kari Rissasen tutkimusryhmässä vuonna 2015.

Jutun toimitus Sisko Loikkanen, kuvat ja video Kari Rissanen

Strateginen liima

Suomalainen liimateollisuuden syntyhistoria liittyy vaneriteollisuuteen 1800-luvun lopulla. Kotitarveliimat ja puusepänteollisuuden käyttämät liimat keiteltiin pitkään kotioloissa.

Tärkkelysliimat olivat vielä 1960-luvulle tultaessa tavanomaisia askarteluliimoja, eivätkä vaneriteollisuuden käyttämät kasvipohjaiset tärkkelysliimat soveltuneet kuin kuivassa ilmanalassa käytettäväksi. Vaneriteollisuus käytti näiden lisäksi myös verialbumiinia, joka tunnettiin hyvin Pietarin alueen suurissa vaneritehtaissa. Venäläinen vaneriteollisuus sijoittui usein suurten teurastamoiden läheisyyteen.

Vanerin liimaustekniikka jaetaan kylmä- ja kuumaliimaukseen. Kylmäliimauksessa vanerin puristus ja liimaus tapahtuu ympäristön määräämässä lämpötilassa. Kylmäliimatut vanerilevyt vaativat noin vuorokauden vetäytymisajan paineen alaisena. Tämä menetelmä oli erityisesti venäläisten vaneritehtaiden käyttämä. Menetelmän mukana kehittyi vähitellen myös kuumentamista vaativia liima-aineita.

1920-luvulla kestävien liima-aineiden saatavuus muodostui todelliseksi ongelmaksi lentokoneteollisuuden yhteydessä. Lentokoneet valmistettiin 1940-luvulle saakka pääosin puusta ja tekstiileistä. Kaseiini eli maitopohjaiset liimat sopivat jotenkin lentokoneenrakennukseen, mutta Saksassa ja Yhdysvalloissa kehitettiin jo synteettisiä liimoja. Suomessa seurattiin kuitenkin tiiviisti keinoainepohjaisten liimojen kehitystä jo 1930-luvun alussa.

Oy Nokia Ab:n tytäryhtiö tuo markkinoille ureaformaldehydihartsiin perustuvat liima-aineet

Suurin yksittäinen kemianteollisuuden haara Suomessa oli itsenäisyyden ajan alkupuolella kumiteollisuus, jos puunjalostusteollisuutta ei lasketa mukaan. Oy Nokia Ab valmisti mm. polkupyörän ja autonrenkaita. Yhtiön tuotanto laajeni 1930-luvulla käsittämään myös muita teknillisiä kumitavaroita. Tampereella sijainneen Nokian tytäryhtiön Oy Suomen hihnatehtaat, myöhemmin Tammer Oy:n erityistuotteeksi tulivat ensimmäisenä maassa synteettiset kaurit, eli ureaformaldehydihartsiin perustuvat liima-aineet. Muita liima-aineiden valmistajia Suomessa olivat Oy Havi Ab, luuliima, Suomen Liima-ainetehdas, Oy Emulsio Ab ja Yhtyneet paperitehtaat Oy.
Muovi- ja keinoaineita valmisti lisäksi Sarvis Oy Tampereella. Vuonna 1933 Oy Hartsiteollisuus Ab käynnisti Tammisaaressa muovinpuristamon, jossa käsiteltiin bakeliittia. Tätä voitiin käyttää myös liima-aineena.
Vaikka kemianteollisuuden tuotanto kasvoi sotavuosina ja teknokemiallisen teollisuuden yritysten lukumäärä nelinkertaistui, ei tuotanto riittänyt takaamaan maan strategisen teollisuuden tarpeita. Suomi oli keinoaineiden suhteen täysin tuonnin varassa.

 

Lentokonevaneriliiman oikea käyttötapa keksittiin Suomessa vahingossa

Toiminimi Wilhelm Schauman valmisti Suomessa lentokonevaneria jo 1920-luvulla myös vientiin. Edward Wegelius kykeni kehittämään tuotetta edelleen seuraavan vuosikymmenen kuluessa. Lentokonevanerin liimauksessa käytetty Theodor Goldschmidtin kehittämä Tego-filmi oli Saksassa jätetty pois käytöstä, koska liimalla ei siellä saatu aikaan kestävää vaneria. Tego-filmin oikea käyttötapa keksittiin Suomessa vahingossa. Lentokonevanerin liimaus suoritettiin ohjeen mukaan täysin kuivilla viiluilla, mutta vaneriviilut olivat Wegeliuksen kokeissa kerran kostuneet vahingossa. Liimaus onnistui hyvin, mikä saatettiin ilmoittaa hämmästyneille saksalaisille.

Wegelius jatkoi Suomessa vaneritutkimuksiaan ja kehitti 1930-luvun lopulla koivuviilupuun, eli kolupuun joka kestää uskomattomia rasituksia. Koupuusta valmistettiin sodan aikana mm. lentokoneenpotkureita.

Kesällä 1939 käytiin kirjeenvaihtoa myös englantilaisen Aero Research Ltd:n kanssa synteettisen Aerolite-liiman ostamisesta Suomeen. Puutekniikan Kannatusyhdistys oli saanut liimasta näytteen, jolla voitiin suorittaa jonkinlaisia kokeita. Yhteys katkesi kuitenkin kokonaan sotavuosien aikana.

Yhteistyö Saksan kanssa sotavuosien aikana ei ollut avointa. Lentokoneteollisuus toimi ulkopoliittisena aseena, josta syystä koneen osien ja tietotaidon liikkumista rajoitettiin. Myös liimat olivat tarkoin varjeltuja salaisuuksia. Esimerkiksi melamiinihartsiliimaa Pressal Ka 29 saatiin Suomeen vain pieni näyte, joka ei riittänyt edes teknisen tutkimuksen tekemiseen.

 

Leijona kylmäliimaa – Liima jolla on perinteet -esittelylehtisiä. Kuva – Turun museokeskus

Kaksikomponenttiliimat jäivät suomalaiselle teollisuudelle mysteeriksi

Kaseiinin ja albumiinin saanti vaikeutui jo vuonna 1941.  USA:ssa aloitettiin aivan 1930-luvun lopussa puurakenteisten lentokoneiden rakentaminen keinohartseja käyttämällä. Tiedot tutkimuksista saatiin Suomeen Ruotsin kautta. Aluksi käytettiin kaurit-tyyppisiä liimoja, pian mukaan tulivat nykyisinkin laajalti tunnetut kaksikomponenttiliimat.

Tammer Oy kykeni jo vuonna 1943 valmistamaan suuria määriä kaurit-liimoja, mutta kaksikomponenttiliimat jäivät suomalaiselle teollisuudelle mysteeriksi. Uusien menetelmien olemassaolosta saatiin tietoja tutkimalla alasammuttuja Neuvostoliiton käyttämiä Yhdysvalloissa valmistettuja lentokoneita.

Valtion Lentokonetehdas ei kyennyt käyttämään kunnolla edes kaurit-menetelmää, koska teollisuudesta ei löytynyt riittävän suurta autoklaavia. Ainoastaan VL Myrsky-hävittäjän kuljettajan istuin kyettiin valmistamaan muottiin puristamalla.  Menetelmää kyettiin käyttämään laajemmin vasta sodan päättyessä VMT Pyörremyrsky- ja Tuuli-koneiden rakentamisessa.

 

 

Suomen Kumitehdas Osakeyhtiön Savion tuotantolaitoksen suojatekstiiliosaston tuotteita esittelemässä Yrjö Länsimäki (vas.) sekä Liima-, sively ja suojatekstiiliosaston johtaja diplomi-insinööri Runar Svensson (oik.) Kerminen, Väinö Johannes, valokuvaaja 1964 Keravan museo

 

Armi Töyrylä operoimassa liimatuubintäyttökonetta Oy Nokia Ab:n Savion tuotantolaitoksen Liima- ja sivelyosastolla marraskuussa 1970. valokuvaaja_ Kerminen, Väinö Johannes

 

Kirjoittaja: Panu Nykänen